Part 3 Questions

1. Guess the results of the following statements (note: there are a couple of tricks, you may need to import something to avoid receiving an error message):
a) $1==2$
b) $1=2$
c) $1<2$
d) $\mathrm{pi}=3.141592$
e) $1=$ True
f) $1==$ True
g) $0==$ False
2. Write a program that allows the user to enter a positive integer. If this number is even, print out its square. If it is odd, print out its cube. Hint: user input should be converted to an int; consider the int() method.
3. Write a program that allows the user to enter two positive integers. If one number divides the other, print "yes", otherwise print "no".
4. Similarly to activity 4 and 5 , take an inputted number and make a program that will print out whether it is odd/even, bigger/less than 100, zero/non-zero, negative/positive.
5. Create two of your very own infinite loops and explain why they'll be infinite.
6. Create a conversion program that takes two user inputs: a number and a unit of mass ('kg', 'lb') in string form. Tell the user using the input function what they must enter and in what format. Make a program that takes a value and a unit, converts it to the other unit and then prints the result.
ex// say the user inputs 5 and ' lb '; your program would return ' 5 lb is xxx kg'
For some extra work instead of using only units of mass make the input any metric unit or any
imperial unit and convert to the other system
ex// metres to yards, etc...
7. Make a guessing game of your own similar to activity 7, but that guesses two numbers, not just one.
8. Create a program that counts from 0 to 25 and then back down to 0 . Each time you add a number have the program print the number it is at. This program should be no more than 10 lines.
9. Write a function sum that takes two integer parameters a and b and returns the sum of squares of all the integers n such that $\mathrm{a}<=\mathrm{n}<=\mathrm{b}$.
10. Write a function triangle that takes three real parameters which represent the lengths of three sides of a triangle. The function should return True if the triangle is right-angled and False otherwise.
11.

a. Write a function factorial that takes a nonnegative integer parameter and returns its factorial; we define $0!=1$.
b. The number e can be defined as the limit of the infinite sum $1 / 0!+1 / 1!+1 / 2!+1 / 3!+1 / 4!+\ldots$. Write a function compute_e which takes a positive integer parameter. This parameter indicates the number of terms that are to be summed (i.e. compute_e(3) should produce the sum $1 / 0!+$ $1 / 1!+1 / 2$!). Sum the terms and return the approximate value of e. Call/use the function you wrote in part a in your solution.

